Palladium-Catalyzed Carbonylation—Decarboxylation of Diethyl(2-iodoaryl)malonates with Imidoyl Chlorides: An Efficient Route to Substituted Isoquinolin-1(2*H*)-ones

Zhaoyan Zheng and Howard Alper*

Centre for Catalysis Research and Innovation, Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada

howard.alper@uottawa.ca

Received August 26, 2008

ABSTRACT

A wide variety of substituted isoquinolin-1(2*H*)-ones were synthesized in reasonable to good yields by the palladium-catalyzed cyclization of diethyl(2-iodoaryl)malonates with imidoyl chlorides and carbon monoxide in tetrahydrofuran. A palladium-catalyzed carbonylation—decarboxylation process may be involved in the one-step synthesis of the isoquinolin-1(2*H*)-ones.

Isoquinolin-1(2*H*)-one derivatives are an important class of heterocyclic compounds with substantial biological activities¹ that can be found in naturally occurring products and synthetic pharmaceuticals such as thalifoline,² dorianine,³ narciclasine,⁴ pancratistain,⁵ and lycoricidine.⁵ In addition, isoquinolin-1(2*H*)-ones are versatile building blocks for the total synthesis of natural alkaloids.⁶ There are a number of approaches to the synthesis of isoquinolin-1(2*H*)-ones reported in the literature including the rearrangement of 2-(2-benzofuranyl)-benzonitriles,⁷ basepromoted condensation reaction of 2-(bromomethyl)benzonitrile,⁸ transformation of isocoumarins or 3-hydroxyphthalides,⁹ double metalation of arylbenzamides,¹⁰ the cyclization of 2-chlorobenzonitriles with β -ketoesters,¹¹ intramolecular Diels–Alder reactions,¹² Wittig reaction,¹³ as well as photochemical reactions,¹⁴ etc. Recently, several examples of transition metal-catalyzed routes to isoquinolin-1(2*H*)-ones have appeared in the literature.^{3,15}

Although some of the methods are effective for the synthesis of isoquinolones, these usually afford the 2- or

ORGANIC LETTERS 2008

Vol. 10, No. 21 4903-4906

^{(1) (}a) Jayaraman, M.; Fox, B. M.; Hollingshead, M.; Kohlhagen, G.; Pommier, Y.; Cushman, M. *J. Med. Chem.* **2000**, *43*, 3688. (b) Zhang, H.; Zembower, D.; Chen, Z. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2687. (c) Bernan, V. S.; Montenegro, D. A.; Korshalla, J. D.; Maiese, W. M.; Steinberg, D. A.; Greenstein, M. *J. Antibiot.* **1994**, *47*, 1417.

⁽²⁾ Chern, M. S.; Li, W. R. Tetrahedron Lett. 2004, 45, 8323.

⁽³⁾ Glushkov, V. A.; Shklyaev, Y. V. Chem. Heterocycl. Compd. 2001, 37, 663.

⁽⁴⁾ Gonzalez, D.; Martinot, T.; Hudlickly, T. Tetrahedron Lett. 1999, 40, 3077.

⁽⁵⁾ Thompson, R. C.; Kallmerten, J. J. Org. Chem. 1990, 55, 6076.

^{(6) (}a) Coelho, F.; Veronese, D.; Lopes, E. C. S.; Rossi, R. C. *Tetrahedron Lett.* **2003**, *44*, 5731. (b) Heaney, H.; Shuhaibar, K. F. *Synlett* **1995**, 47.

⁽⁷⁾ Gutillaumel, J.; Boccara, N.; Demersemann, P.; Royer, R. J. Chem. Soc., Chem. Commun. 1998, 1604.

⁽⁸⁾ Jagtap, P. G.; Baloglu, E.; Southan, G.; Williams, W.; Roy, A.; Nivorozhkin, A.; Landrau, N.; Desisto, K.; Salzman, A. L.; Szabo, C. *Org. Lett.* **2005**, *7*, 1753.

⁽⁹⁾ Otha, S.; Kimoto, S. Tetrahedron Lett. 1975, 16, 2279.

^{(10) (}a) Fisher, L. E.; Muchowski, J. M.; Clark, R. D. J. Org. Chem. **1992**, 57, 2700. (b) Davis, S. E.; Church, A. C.; Griffith, C. L.; Beam, C. F. Synth. Commun. **1997**, 27, 2961.

⁽¹¹⁾ Snow, R. J.; Butz, T.; Hammach, A.; Kapadia, S.; Morwick, T. M.; Prokopowicz, A. S.; Takahashi, H.; Tan, J. D.; Tschantza, M. A.; Wang, X. J. *Tetrahedron Lett.* **2002**, *43*, 7553.

⁽¹²⁾ Gutierrz, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. 1989, 54, 4335.

3-substituted target compounds. The introduction of polysubstituents in the isoquinolone ring often requires multistep reactions.

As part of our continuing effort to attain the efficient preparation of different carbonyl-containing heterocycles by palladium-catalyzed cyclocarbonylation, we have synthesized thiochroman-4-ones,¹⁶ lactones,¹⁷ 2(5*H*)-furanones,¹⁸ 1,3-oxazin-4-ones,¹⁹ 1,3-benzothiazin-2-ones,²⁰ quinazolin-4(3*H*)-ones,²¹ and different ring-sized lactams.²²

Encouraged by these results, we decided to explore the application of Pd-catalyzed carbonylation to the construction of the isoquinolin-1(2*H*)-one skeleton. Initial studies focused on the Pd-catalyzed cyclocarbonylation of ethyl(2-iodophenyl)acetate and *N*-(phenyl)benzimidoyl chloride using 3 mol % of Pd(OAc)₂, 13.5 mol % of PPh₃ as the catalyst, and 3 equiv of Et₃N in 8 mL of THF at 400 psi of pressure of carbon monoxide at 120 °C for 24 h. However, the substrates failed to produce any of the desired isoquinolin-1(2*H*)-one (Scheme 1).

Scheme 1. Carbonylation of *N*-(Phenyl)benzimidoyl Chloride with Ethyl(2-iodophenyl)acetate or Diethyl(2-iodophenyl)malonate

The same reaction using diethyl(2-iodophenyl)malonate instead of ethyl(2-iodophenyl)acetate did produce 2,3,4trisubstituted isoquinolone **3a** in 21% yield with some recovered starting material and *N*-phenylbenzamide as a byproduct (Scheme 1). The starting materials were consumed completely by extending the reaction time to 48 h, and the **Table 1.** Optimization of the Reaction ofDiethyl(2-iodoaryl)malonate with N-(Phenyl)benzimidoylChloride^a

L 1a	CO ₂ Et ¹ CI Ph	Pd catalyst	/ ligand ,THF 〔		Ph Ph it
entry	catalyst system	base	time(h)	CO (psi)	yield $(\%)^b$
1	Pd(OAc) ₂ /PPh ₃	Et_3N	24	400	21
2	Pd(OAc) ₂ /PPh ₃	Et_3N	48	400	34
3	Pd(OAc) ₂ /dppb	$\mathrm{Et}_{3}\mathrm{N}$	48	400	trace
4	Pd(OAc) ₂ /dppp	$\mathrm{Et}_{3}\mathrm{N}$	48	400	trace
5	Pd(OAc) ₂ /dppf	$\mathrm{Et}_{3}\mathrm{N}$	48	400	trace
6	$Pd(OAc)_2/(m-tolyl)_3P$	$\mathrm{Et}_{3}\mathrm{N}$	48	400	33
7	Pd(OAc) ₂ /Bu ₃ P	$\mathrm{Et}_{3}\mathrm{N}$	48	400	ND^c
8	Pd(OAc) ₂ /TDMPP	$\mathrm{Et}_{3}\mathrm{N}$	48	400	47
9	Pd(OAc) ₂ /TDMPP	K_2CO3	48	400	41
10	Pd(OAc) ₂ /TDMPP	Cs_2CO_3	48	400	44
11	Pd(OAc) ₂ /TDMPP	i-Pr ₂ NEt	48	400	53
12	Pd(OAc) ₂ /TDMPP	i-Pr ₂ NEt	48	200	31
13	PdCl ₂ (PPh ₃)/TDMPP	i-Pr ₂ NEt	48	400	40
14	Pd ₂ (dba) ₃ / TDMPP	i-Pr ₂ NEt	48	400	48

^{*a*} Reaction conditions: **1a** (1.0 mmol), **2a** (1.0 mmol), Pd cat. (0.03 mmol), phosphine ligand (0.135 or 0.07 mmol), base (3.0 mmol), CO 200 or 400 psi, 120 °C, THF (8.0 mL). ^{*b*} Isolated yield. ^{*c*} Not determined: a complex mixture of unidentified compounds was obtained.

interesting feature of this reaction is that the formation of the isoquinolin-1(2H)-one is accompanied by CO insertion and an ethyl carboxylate group leaving in a single operational step.

Optimization of the reaction was effected using different conditions, and the results are summarized in Table 1. Entries 2-8 indicated that the choice of phosphine ligand was important for this transformation. When bidentate phosphine ligands were employed (Table 1, entries 3-5), only trace amounts of the desired isoquinolin-1(2H)-ones were detected, while *N*-phenylbenzamide was obtained as a major product in good yields. Use of the tri-*m*-tolylphosphine ((*m*-tolyl)₃P) as ligand afforded **3a** in only 33% yield (Table 1, entry 6), while the trialkylphosphine and tributylphosphine gave a complex mixture of products (Table 1, entry 7). Performing the same reaction using the tri(2,6-dimethoxyphenyl)phosphine (TDMPP) as the ligand increased the yield of **3a** to 47% (Table 1, entry 8).

The yield of isoquinolin-1(2*H*)-one **3a** was also dependent on the nature of the base. The presence of inorganic bases, such as K_2CO_3 and Cs_2CO_3 , gave **3a** in 41% and 44% yield, respectively (Table 1, entries 9 and 10). The more hindered amine base *N*,*N*-diisopropylethylamine (*i*-Pr₂NEt) afforded **3a** in 53% yield with a small amount of *N*-phenylbenzamide

⁽¹³⁾ Epsztajin, J.; Grzelak, R.; Jozwiak, A. Synthesis 1996, 1212.

^{(14) (}a) Guastavino, J. F.; Barolo, S. M.; Rossi, R. A. *Eur. J. Org. Chem.* **2006**, 3898. (b) Griesbeck, A. G.; Hirt, J.; Kramer, W.; Dallakian, P. *Tetrahedron* **1998**, *54*, 3169. (c) Weidner-Wells, M. A.; Oda, K.; Mazzochi, P. H. *Tetrahedron* **1997**, *53*, 3475.

^{(15) (}a) Cherry, K.; Duchene, A.; Thibonnet, J.; Parrain, L.; Abarbri, M. Synthesis 2005, 2349. (b) He, Z.; Yudin, A. K. Org. Lett. 2006, 8, 5892.
(c) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058. (d) Hudlicky, T.; Olivo, H. F. J. Am. Chem. Soc. 1992, 114, 9694.
(e) Grigg, R.; Sridharan, V.; Xu, L. H. J. Chem. Soc., Chem. Commun. 1995, 1903. (f) Miura, T.; Yamauchi, M.; Murakami, M. Org. Lett. 2008, 10, 3085.

⁽¹⁶⁾ Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646.

^{(17) (}a) Cao, H.; Xiao, W. J.; Alper, H. Adv. Synth. Catal. 2006, 348, 1807. (b) Li, Y.; Alper, H. Org. Lett. 2006, 8, 5199. (c) El Ali, B.; Okuro, K.; Vasapollo, G.; Alper, H. J. Am. Chem. Soc. 1996, 118, 4264.

⁽¹⁸⁾ Yu, W. Y.; Alper, H. J. Org. Chem. **1997**, 62, 5684.

⁽¹⁹⁾ Larksarp, C.; Alper, H. J. Org. Chem. 1999, 64, 9194.

⁽²⁰⁾ Rescourio, G.; Alper, H. J. Org. Chem. 2008, 73, 1612

 ^{(21) (}a) Larksarp, C.; Alper, H. J. Org. Chem. 2000, 65, 2773. (b) Zheng,
 Z. Y.; Alper, H. Org. Lett. 2008, 10, 829.

^{(22) (}a) Lu, S. M.; Alper, H. J. Am. Chem. Soc. **2008**, 130, 6451. (b) Lu, S. M.; Alper, H. Chem.-Eur. J. **2007**, 13, 5908. (c) Lu, S. M.; Alper, H. J. Am. Chem. Soc. **2005**, 127, 14776.

Table 2. One-Step Synthesis of Substituted Isoquinolones fromDiethyl(2-iodophenyl)malonates 1 and Imidoyl Chlorides 2^a

 a Diethyl(2-iodophenyl)malonate **1** (1.0 mmol), imidoyl chloride **2** (1.0 mmol), Pd(OAc)₂ (0.03 mmol), TDMPP (0.135 mmol), *i*-Pr₂NEt (3.0 mmol), CO 400 psi, THF (8.0 mL), 120 °C, 48 h. ^{*b*} Ioslated yield.

as a byproduct (Table 1, entry 11). While $Pd_2(dba)_3$ or $PdCl_2(PPh)_3$ can be used to catalyze the reaction (Table 1, entries 13 and 14), neither are as effective as $Pd(OAc)_2$.

Reducing the pressure of carbon monoxide from 400 to 200 psi resulted in the recovery of some starting material and a lower yield for **3a** (Table 1, entry 12).

On the basis of the above results, reactions were effected using the catalytic system comprised of $Pd(OAC)_2$ and TDMPP, in *i*-Pr₂NEt as the base and CO (400 psi) at 120 °C in THF for 48 h.

The scope of the present synthetic method was extended to a variety of ethyl(2-iodoaryl)malonates and different imidoyl chlorides. The results are summarized in Table 2.

Reaction of 1a with an imidoyl chloride containing a 4-methoxyl or 4-methyl phenyl group at nitrogen or carbon gave the corresponding 2,3,4-trisubstituted isoquinolin-1(2H)ones 3b-e in 48-63% yields (Table 2, entries 2-5). The reaction tolerates both the electron-donating and -withdrawing substituents. Concerning the latter, the use of imidoyl chlorides having a 4-chlorophenyl group afforded 3f and 3g in 50% and 42% yields, respectively (Table 2, entries 6 and 7). The yield of **3h** was only 33% when the imidoyl chloride bearing two 4-chlorophenyl groups was subjected to the normal reaction conditions. An imidoyl chloride bearing an alkyl substituent gave better product yields. Treatment of **1a** with the imidoyl chloride having a *t*-butyl or isopropyl group afforded the expected products, 3i and 3j, in 64% and 65% yields (Table 2, entries 9 and 10). The diethyl(2iodophenyl)malonate derivative having electron-donating dimethoxy substituents 1b reacted with 2a to form the corresponding product 3k in 65% yield (Table 2, entry 11). In a similar manner, 1b underwent carbonylation with 2i affording 31 in 70% yield (Table 2, entry 12).

A possible reaction mechanism for the formation of isoquinolin-1(2H)-ones **3** is outlined in Scheme 2. It is conceivable that an imidoyl chloride reacts with diethyl(2-iodoaryl)malonate in the presence of a base to generate intermediate **4**. Oxidative addition of **4** to the in situ

generated palladium(0) species²³ can lead to the arylpalladium complex **5**. Insertion of carbon monoxide into the aryl carbon—palladium bond of **5** would afford the aroylpalladium iodide complex **6**, and the imine nitrogen then attacks the acylpalladium to form a seven-membered palladacyclic ammonium salt **7**.²⁴ Reductive elimination of **7** may lead to the isoquinolone salt **8** and regenerate the palladium(0) species. The salt **8** subsequently undergoes base-induced decarboalkoxylation to afford isoquinolin-1(2*H*)-one **3**.

In conclusion, we have developed a novel and effective approach for the one-step synthesis of polysubstituted

isoquinolin-1(2H)-ones. The reaction is compatible with a variety of functional groups and affords the heterocycles in quite good yields. In addition, the present methodology demonstrates the viability of the Pd-catalyzed cyclocarbonylation—decarboxylation pathway.

Acknowledgment. We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for support of this research.

Supporting Information Available: Experimental procedures, characterization data, and copies of ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801991M

⁽²³⁾ MaCrindle, R.; Ferguson, G.; Arsenault, G. J.; McAlees, A. J.; Stephenson, D. K. J. Chem. Res., Synop. **1984**, 360.

⁽²⁴⁾ Roesch, K. R.; Zhang, H. M.; Larock, R. C. J. Org. Chem. 2001, 66, 8042.